Testkit

The otel4s-oteljava-testkit provides in-memory implementations of metric and trace exporters. In-memory data can be used to test the structure of the spans, the names of instruments, and many more.

The testkit is framework-agnostic, so it can be used with any test framework, such as weaver, munit, scalatest.

Getting started

Add settings to the build.sbt:

libraryDependencies ++= Seq(
  "org.typelevel" %% "otel4s-oteljava-testkit" % "0.12.0-RC2" % Test, // <1>
)

Add directives to the *.scala file:

//> using test.dep "org.typelevel::otel4s-oteljava-testkit:0.12.0-RC2" // <1>
  1. Add the otel4s-oteljava-testkit library

Testing metrics

Let's assume we have a program that increments a counter by one and sets the gauge's value to 42. Here is how we can test this program:

import cats.effect.IO
import org.typelevel.otel4s.metrics.MeterProvider
import org.typelevel.otel4s.oteljava.testkit.OtelJavaTestkit
import org.typelevel.otel4s.oteljava.testkit.metrics.data.{Metric, MetricData}

// the program that we want to test 
def program(meterProvider: MeterProvider[IO]): IO[Unit] =
  for {
    meter <- meterProvider.get("service")
    
    counter <- meter.counter[Long]("service.counter").create
    _ <- counter.inc()

    gauge <- meter.gauge[Long]("service.gauge").create
    _ <- gauge.record(42L)
  } yield ()

// the test
def test: IO[Unit] = 
  OtelJavaTestkit.inMemory[IO]().use { testkit =>
    // the list of expected metrics
    val expected = List(
      TelemetryMetric.SumLong("service.counter", List(1L)),
      TelemetryMetric.GaugeLong("service.gauge", List(42L))
    )
    
    for {
      // invoke the program
      _ <- program(testkit.meterProvider)
      // collect the metrics
      metrics <- testkit.collectMetrics[Metric]
      // verify the collected metrics
      _ <- assertMetrics(metrics, expected)
    } yield ()
  }
  
// here you can use an assertion mechanism from your favorite testing framework
def assertMetrics(metrics: List[Metric], expected: List[TelemetryMetric]): IO[Unit] =
  IO {
    assert(metrics.sortBy(_.name).map(TelemetryMetric.fromMetric) == expected)
  }
  
// a minimized representation of the MetricData to simplify testing
sealed trait TelemetryMetric
object TelemetryMetric {
  case class SumLong(name: String, values: List[Long]) extends TelemetryMetric
  case class SumDouble(name: String, values: List[Double]) extends TelemetryMetric

  case class GaugeLong(name: String, values: List[Long]) extends TelemetryMetric
  case class GaugeDouble(name: String, values: List[Double]) extends TelemetryMetric

  case class Summary(name: String, values: List[Double]) extends TelemetryMetric
  case class Histogram(name: String, values: List[Double]) extends TelemetryMetric
  case class ExponentialHistogram(name: String, values: List[Double]) extends TelemetryMetric

  def fromMetric(metric: Metric): TelemetryMetric =
    metric.data match {
      case MetricData.LongGauge(points)   => GaugeLong(metric.name, points.map(_.value))
      case MetricData.DoubleGauge(points) => GaugeDouble(metric.name, points.map(_.value))
      case MetricData.LongSum(points)     => SumLong(metric.name, points.map(_.value))
      case MetricData.DoubleSum(points)   => SumDouble(metric.name, points.map(_.value))
      case MetricData.Summary(points)     => Summary(metric.name, points.map(_.value.sum))
      case MetricData.Histogram(points)   => Histogram(metric.name, points.map(_.value.sum))
      case MetricData.ExponentialHistogram(points) =>
        ExponentialHistogram(metric.name, points.map(_.value.sum))
    }
}

MetricData provides all information about the metric: name, instrumentation scope, telemetry resource, data points, associated attributes, collection time window, and so on.

It's hard to implement an assertion that verifies all aspects of the metric because many things must be considered, such as time window, attributes, exemplars, etc. To simplify the testing process, we can define a minimized projection of MetricData such as TelemetryMetric.

Testing spans

Let's assume we want to test the structure of created spans:

import cats.effect.IO
import io.opentelemetry.sdk.trace.data.SpanData
import org.typelevel.otel4s.oteljava.testkit.OtelJavaTestkit
import org.typelevel.otel4s.trace.TracerProvider
import scala.concurrent.duration._

// the program that we want to test 
def program(tracerProvider: TracerProvider[IO]): IO[Unit] =
  for {
    tracer <- tracerProvider.get("service")
    _ <- tracer.span("app.span").surround {
      tracer.span("app.nested.1").surround(IO.sleep(200.millis)) >>
      tracer.span("app.nested.2").surround(IO.sleep(300.millis))
    }
  } yield ()

// the test
def test: IO[Unit] =
  OtelJavaTestkit.inMemory[IO]().use { testkit =>
    // the list of expected spans
    val expected = List(
      SpanTree(
        TelemetrySpan("app.span"),
        List(
          SpanTree(TelemetrySpan("app.nested.1"), Nil),
          SpanTree(TelemetrySpan("app.nested.2"), Nil)
        )
      )
    )

    for {
      // invoke the program
      _ <- program(testkit.tracerProvider)
      // collect the finished spans
      spans <- testkit.finishedSpans
      // verify the collected spans
      _ <- assertSpans(spans, expected)
    } yield ()
  }

// here you can use an assertion mechanism from your favorite testing framework
def assertSpans(spans: List[SpanData], expected: List[SpanTree[TelemetrySpan]]): IO[Unit] =
  IO {
    val trees = SpanTree.fromSpans(spans)
    assert(trees.map(_.map(data => TelemetrySpan(data.getName))) == expected)
  }

// a minimized representation of the SpanData to simplify testing
case class TelemetrySpan(name: String)

// a tree-like representation of the spans
case class SpanTree[A](current: A, children: List[SpanTree[A]]) {
  def map[B](f: A => B): SpanTree[B] = SpanTree(f(current), children.map(_.map(f)))
}
object SpanTree {
  def fromSpans(spans: List[SpanData]): List[SpanTree[SpanData]] = {
    val byParent = spans.groupBy { s =>
      Option.when(s.getParentSpanContext.isValid)(s.getParentSpanId)
    }
    val topNodes = byParent.getOrElse(None, Nil)
    val bottomToTop = sortNodesByDepth(0, topNodes, byParent, Nil)
    val maxDepth = bottomToTop.headOption.map(_.depth).getOrElse(0)
    buildFromBottom(maxDepth, bottomToTop, byParent, Map.empty)
  }
  
  private case class EntryWithDepth(data: SpanData, depth: Int)
  
  @annotation.tailrec
  private def sortNodesByDepth(
      depth: Int,
      nodesInDepth: List[SpanData],
      nodesByParent: Map[Option[String], List[SpanData]],
      acc: List[EntryWithDepth]
  ): List[EntryWithDepth] = {
    val withDepth = nodesInDepth.map(n => EntryWithDepth(n, depth))
    val calculated = withDepth ++ acc
    val children = nodesInDepth.flatMap { n =>
      nodesByParent.getOrElse(Some(n.getSpanId), Nil)
    }
    children match {
      case Nil =>
        calculated
      case _ =>
        sortNodesByDepth(depth + 1, children, nodesByParent, calculated)
    }
  }
  
  @annotation.tailrec
  private def buildFromBottom(
      depth: Int,
      remaining: List[EntryWithDepth],
      nodesByParent: Map[Option[String], List[SpanData]],
      processedNodesById: Map[String, SpanTree[SpanData]]
  ): List[SpanTree[SpanData]] = {
    val (nodesOnCurrentDepth, rest) = remaining.span(_.depth == depth)
    val newProcessedNodes = nodesOnCurrentDepth.map { n =>
      val nodeId = n.data.getSpanId
      val children = nodesByParent
        .getOrElse(Some(nodeId), Nil)
        .flatMap(c => processedNodesById.get(c.getSpanId))
      val leaf = SpanTree(n.data, children)
      nodeId -> leaf
    }.toMap
    if (depth > 0) {
      buildFromBottom(
        depth - 1, 
        rest, 
        nodesByParent, 
        processedNodesById ++ newProcessedNodes
      )
    } else {
      // top nodes
      newProcessedNodes.values.toList
    }
  }
}

SpanData provides all information about the span: name, instrumentation scope, telemetry resource, associated attributes, time window, and so on.

It's difficult to implement an assertion that verifies all aspects of the span because many things must be considered, such as time windows, attributes, etc. To simplify the testing process, we can define a minimized projection of SpanData, such as TelemetrySpan.