Packages

c

cats.data

BinestedBitraverse

sealed abstract class BinestedBitraverse[F[_, _], G[_], H[_]] extends BinestedBifoldable[F, G, H] with Bitraverse[[δ$14$, ε$15$]Binested[F, G, H, δ$14$, ε$15$]]

Source
Binested.scala
Linear Supertypes
Bitraverse[[δ$14$, ε$15$]Binested[F, G, H, δ$14$, ε$15$]], Bifunctor[[δ$14$, ε$15$]Binested[F, G, H, δ$14$, ε$15$]], BinestedBifoldable[F, G, H], Bifoldable[[δ$12$, ε$13$]Binested[F, G, H, δ$12$, ε$13$]], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. BinestedBitraverse
  2. Bitraverse
  3. Bifunctor
  4. BinestedBifoldable
  5. Bifoldable
  6. Serializable
  7. Serializable
  8. AnyRef
  9. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. implicit abstract def F: Bitraverse[F]
    Definition Classes
    BinestedBitraverseBinestedBifoldable
  2. implicit abstract def G: Traverse[G]
    Definition Classes
    BinestedBitraverseBinestedBifoldable
  3. implicit abstract def H: Traverse[H]
    Definition Classes
    BinestedBitraverseBinestedBifoldable

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def bifold[A, B](fab: Binested[F, G, H, A, B])(implicit A: Monoid[A], B: Monoid[B]): (A, B)
    Definition Classes
    Bifoldable
  6. def bifoldLeft[A, B, C](fab: Binested[F, G, H, A, B], c: C)(f: (C, A) ⇒ C, g: (C, B) ⇒ C): C

    Collapse the structure with a left-associative function

    Collapse the structure with a left-associative function

    Example:

    scala> import cats.Bifoldable
    scala> val fab = (List(1), 2)
    
    Folding by addition to zero:
    scala> Bifoldable[Tuple2].bifoldLeft(fab, Option(0))((c, a) => c.map(_ + a.head), (c, b) => c.map(_ + b))
    res0: Option[Int] = Some(3)

    With syntax extensions, bifoldLeft can be used like:

    scala> import cats.implicits._
    scala> fab.bifoldLeft(Option(0))((c, a) => c.map(_ + a.head), (c, b) => c.map(_ + b))
    res1: Option[Int] = Some(3)
    Definition Classes
    BinestedBifoldableBifoldable
  7. def bifoldMap[A, B, C](fab: Binested[F, G, H, A, B])(f: (A) ⇒ C, g: (B) ⇒ C)(implicit C: Monoid[C]): C

    Collapse the structure by mapping each element to an element of a type that has a cats.Monoid

    Collapse the structure by mapping each element to an element of a type that has a cats.Monoid

    Definition Classes
    Bifoldable
  8. def bifoldRight[A, B, C](fab: Binested[F, G, H, A, B], c: Eval[C])(f: (A, Eval[C]) ⇒ Eval[C], g: (B, Eval[C]) ⇒ Eval[C]): Eval[C]

    Collapse the structure with a right-associative function Right associative lazy bifold on F using the folding function 'f' and 'g'.

    Collapse the structure with a right-associative function Right associative lazy bifold on F using the folding function 'f' and 'g'.

    This method evaluates c lazily (in some cases it will not be needed), and returns a lazy value. We are using (_, Eval[C]) => Eval[C] to support laziness in a stack-safe way. Chained computation should be performed via .map and .flatMap.

    For more detailed information about how this method works see the documentation for Eval[_].

    Example:

    scala> import cats.Bifoldable
    scala> val fab = (List(1), 2)
    
    Folding by addition to zero:
    scala> val bifolded1 = Bifoldable[Tuple2].bifoldRight(fab, Eval.now(0))((a, c) => c.map(_ + a.head), (b, c) => c.map(_ + b))
    scala> bifolded1.value
    res0: Int = 3

    With syntax extensions, bifoldRight can be used like:

    scala> import cats.implicits._
    scala> val bifolded2 = fab.bifoldRight(Eval.now(0))((a, c) => c.map(_ + a.head), (b, c) => c.map(_ + b))
    scala> bifolded2.value
    res1: Int = 3
    Definition Classes
    BinestedBifoldableBifoldable
  9. def bimap[A, B, C, D](fab: Binested[F, G, H, A, B])(f: (A) ⇒ C, g: (B) ⇒ D): Binested[F, G, H, C, D]

    The quintessential method of the Bifunctor trait, it applies a function to each "side" of the bifunctor.

    The quintessential method of the Bifunctor trait, it applies a function to each "side" of the bifunctor.

    Example:

    scala> import cats.implicits._
    
    scala> val x: (List[String], Int) = (List("foo", "bar"), 3)
    scala> x.bimap(_.headOption, _.toLong + 1)
    res0: (Option[String], Long) = (Some(foo),4)
    Definition Classes
    BitraverseBifunctor
  10. def bisequence[G[_], A, B](fab: Binested[F, G, H, G[A], G[B]])(implicit arg0: Applicative[G]): G[Binested[F, G, H, A, B]]

    Invert the structure from F[G[A], G[B]] to G[F[A, B]].

    Invert the structure from F[G[A], G[B]] to G[F[A, B]].

    Example:

    scala> import cats.implicits._
    
    scala> val rightSome: Either[Option[String], Option[Int]] = Either.right(Some(3))
    scala> rightSome.bisequence
    res0: Option[Either[String, Int]] = Some(Right(3))
    
    scala> val rightNone: Either[Option[String], Option[Int]] = Either.right(None)
    scala> rightNone.bisequence
    res1: Option[Either[String, Int]] = None
    
    scala> val leftSome: Either[Option[String], Option[Int]] = Either.left(Some("foo"))
    scala> leftSome.bisequence
    res2: Option[Either[String, Int]] = Some(Left(foo))
    
    scala> val leftNone: Either[Option[String], Option[Int]] = Either.left(None)
    scala> leftNone.bisequence
    res3: Option[Either[String, Int]] = None
    Definition Classes
    Bitraverse
  11. def bitraverse[I[_], A, B, C, D](fab: Binested[F, G, H, A, B])(f: (A) ⇒ I[C], g: (B) ⇒ I[D])(implicit I: Applicative[I]): I[Binested[F, G, H, C, D]]

    Traverse each side of the structure with the given functions.

    Traverse each side of the structure with the given functions.

    Example:

    scala> import cats.implicits._
    
    scala> def parseInt(s: String): Option[Int] = Either.catchOnly[NumberFormatException](s.toInt).toOption
    
    scala> ("1", "2").bitraverse(parseInt, parseInt)
    res0: Option[(Int, Int)] = Some((1,2))
    
    scala> ("1", "two").bitraverse(parseInt, parseInt)
    res1: Option[(Int, Int)] = None
    Definition Classes
    BinestedBitraverseBitraverse
  12. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native() @IntrinsicCandidate()
  13. def compose[G[_, _]](implicit ev: Bitraverse[G]): Bitraverse[[α, β]Binested[F, G, H, G[α, β], G[α, β]]]

    If F and G are both cats.Bitraverse then so is their composition F[G[_, _], G[_, _]]

    If F and G are both cats.Bitraverse then so is their composition F[G[_, _], G[_, _]]

    Definition Classes
    Bitraverse
  14. def compose[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β]Binested[F, G, H, G[α, β], G[α, β]]]

    The composition of two Bifunctors is itself a Bifunctor

    The composition of two Bifunctors is itself a Bifunctor

    Definition Classes
    Bifunctor
  15. def compose[G[_, _]](implicit ev: Bifoldable[G]): Bifoldable[[α, β]Binested[F, G, H, G[α, β], G[α, β]]]
    Definition Classes
    Bifoldable
  16. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  17. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  18. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @IntrinsicCandidate()
  19. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @IntrinsicCandidate()
  20. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  21. def leftFunctor[X]: Functor[[α$1$]Binested[F, G, H, α$1$, X]]
    Definition Classes
    Bifunctor
  22. def leftMap[A, B, C](fab: Binested[F, G, H, A, B])(f: (A) ⇒ C): Binested[F, G, H, C, B]

    apply a function to the "left" functor

    apply a function to the "left" functor

    Definition Classes
    Bifunctor
  23. def leftSequence[G[_], A, B](fgab: Binested[F, G, H, G[A], B])(implicit G: Applicative[G]): G[Binested[F, G, H, A, B]]

    Sequence the left side of the structure.

    Sequence the left side of the structure. For the right side, use the standard sequence from cats.Traverse.

    Example:

    scala> import cats.implicits._
    
    scala> val optionalErrorRight: Either[Option[String], Int] = Either.right(123)
    scala> optionalErrorRight.leftSequence
    res1: Option[Either[String, Int]] = Some(Right(123))
    
    scala> val optionalErrorLeftSome: Either[Option[String], Int] = Either.left(Some("something went wrong"))
    scala> optionalErrorLeftSome.leftSequence
    res2: Option[Either[String, Int]] = Some(Left(something went wrong))
    
    scala> val optionalErrorLeftNone: Either[Option[String], Int] = Either.left(None)
    scala> optionalErrorLeftNone.leftSequence
    res3: Option[Either[String,Int]] = None
    Definition Classes
    Bitraverse
    Annotations
    @noop()
  24. def leftTraverse[G[_], A, B, C](fab: Binested[F, G, H, A, B])(f: (A) ⇒ G[C])(implicit G: Applicative[G]): G[Binested[F, G, H, C, B]]

    Traverse over the left side of the structure.

    Traverse over the left side of the structure. For the right side, use the standard traverse from cats.Traverse.

    Example:

    scala> import cats.implicits._
    
    scala> val intAndString: (Int, String) = (7, "test")
    
    scala> Bitraverse[Tuple2].leftTraverse(intAndString)(i => Option(i).filter(_ > 5))
    res1: Option[(Int, String)] = Some((7,test))
    
    scala> Bitraverse[Tuple2].leftTraverse(intAndString)(i => Option(i).filter(_ < 5))
    res2: Option[(Int, String)] = None
    Definition Classes
    Bitraverse
    Annotations
    @noop()
  25. def leftWiden[A, B, AA >: A](fab: Binested[F, G, H, A, B]): Binested[F, G, H, AA, B]

    Widens A into a supertype AA.

    Widens A into a supertype AA. Example:

    scala> import cats.implicits._
    scala> sealed trait Foo
    scala> case object Bar extends Foo
    scala> val x1: Either[Bar.type, Int] = Either.left(Bar)
    scala> val x2: Either[Foo, Int] = x1.leftWiden
    Definition Classes
    Bifunctor
  26. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  27. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @IntrinsicCandidate()
  28. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @IntrinsicCandidate()
  29. def rightFunctor[X]: Functor[[β$0$]Binested[F, G, H, X, β$0$]]
    Definition Classes
    Bifunctor
  30. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  31. def toString(): String
    Definition Classes
    AnyRef → Any
  32. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  33. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  34. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] ) @Deprecated
    Deprecated

Inherited from Bitraverse[[δ$14$, ε$15$]Binested[F, G, H, δ$14$, ε$15$]]

Inherited from Bifunctor[[δ$14$, ε$15$]Binested[F, G, H, δ$14$, ε$15$]]

Inherited from BinestedBifoldable[F, G, H]

Inherited from Bifoldable[[δ$12$, ε$13$]Binested[F, G, H, δ$12$, ε$13$]]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped