t

cats

# CommutativeFlatMap 

### Companion object CommutativeFlatMap

#### trait CommutativeFlatMap[F[_]] extends FlatMap[F] with CommutativeApply[F]

Commutative FlatMap.

Further than a FlatMap, which just allows composition of dependent effectful functions, in a Commutative FlatMap those functions can be composed in any order, which guarantees that their effects do not interfere.

Must obey the laws defined in cats.laws.CommutativeFlatMapLaws.

Annotations
@implicitNotFound( ... ) @typeclass( ... , ... )
Source
CommutativeFlatMap.scala
Linear Supertypes
Known Subclasses
Ordering
1. Grouped
2. Alphabetic
3. By Inheritance
Inherited
1. CommutativeFlatMap
2. CommutativeApply
3. FlatMap
4. Apply
5. ApplyArityFunctions
6. InvariantSemigroupal
7. Semigroupal
8. Functor
9. Invariant
10. Serializable
11. Serializable
12. AnyRef
13. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Abstract Value Members

1. abstract def flatMap[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[B]
Definition Classes
FlatMap
2. abstract def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]
Definition Classes
Functor
3. abstract def tailRecM[A, B](a: A)(f: (A) ⇒ F[Either[A, B]]): F[B]

Keeps calling `f` until a `scala.util.Right[B]` is returned.

Keeps calling `f` until a `scala.util.Right[B]` is returned.

Implementations of this method should use constant stack space relative to `f`.

Definition Classes
FlatMap

### Concrete Value Members

1. final def !=(arg0: Any)
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def *>[A, B](fa: F[A])(fb: F[B]): F[B]

Alias for productR.

Alias for productR.

Definition Classes
Apply
Annotations
@inline()
4. final def <*[A, B](fa: F[A])(fb: F[B]): F[A]

Alias for productL.

Alias for productL.

Definition Classes
Apply
Annotations
@inline()
5. final def <*>[A, B](ff: F[(A) ⇒ B])(fa: F[A]): F[B]

Alias for ap.

Alias for ap.

Definition Classes
Apply
Annotations
@inline()
6. final def ==(arg0: Any)
Definition Classes
AnyRef → Any
7. def ap[A, B](ff: F[(A) ⇒ B])(fa: F[A]): F[B]

Given a value and a function in the Apply context, applies the function to the value.

Given a value and a function in the Apply context, applies the function to the value.

Example:

```scala> import cats.implicits._

scala> val someF: Option[Int => Long] = Some(_.toLong + 1L)
scala> val noneF: Option[Int => Long] = None
scala> val someInt: Option[Int] = Some(3)
scala> val noneInt: Option[Int] = None

scala> Apply[Option].ap(someF)(someInt)
res0: Option[Long] = Some(4)

scala> Apply[Option].ap(noneF)(someInt)
res1: Option[Long] = None

scala> Apply[Option].ap(someF)(noneInt)
res2: Option[Long] = None

scala> Apply[Option].ap(noneF)(noneInt)
res3: Option[Long] = None```
Definition Classes
FlatMapApply
8. def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]

Definition Classes
ApplyArityFunctions
9. def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]

Definition Classes
ApplyArityFunctions
10. def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]

Definition Classes
ApplyArityFunctions
11. def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]

Definition Classes
ApplyArityFunctions
12. def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]

Definition Classes
ApplyArityFunctions
13. def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]

Definition Classes
ApplyArityFunctions
14. def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]

Definition Classes
ApplyArityFunctions
15. def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]

Definition Classes
ApplyArityFunctions
16. def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]

Definition Classes
ApplyArityFunctions
17. def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]

Definition Classes
ApplyArityFunctions
18. def ap2[A, B, Z](ff: F[(A, B) ⇒ Z])(fa: F[A], fb: F[B]): F[Z]

ap2 is a binary version of ap, defined in terms of ap.

ap2 is a binary version of ap, defined in terms of ap.

Definition Classes
FlatMapApply
19. def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]

Definition Classes
ApplyArityFunctions
20. def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]

Definition Classes
ApplyArityFunctions
21. def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]

Definition Classes
ApplyArityFunctions
22. def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]

Definition Classes
ApplyArityFunctions
23. def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]

Definition Classes
ApplyArityFunctions
24. def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]

Definition Classes
ApplyArityFunctions
25. def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]

Definition Classes
ApplyArityFunctions
26. def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]

Definition Classes
ApplyArityFunctions
27. def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]

Definition Classes
ApplyArityFunctions
28. def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) ⇒ Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]

Definition Classes
ApplyArityFunctions
29. def as[A, B](fa: F[A], b: B): F[B]

Replaces the `A` value in `F[A]` with the supplied value.

Replaces the `A` value in `F[A]` with the supplied value.

Example:

```scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)```
Definition Classes
Functor
30. final def asInstanceOf[T0]: T0
Definition Classes
Any
31. def clone()
Attributes
protected[lang]
Definition Classes
AnyRef
Annotations
@throws( ... ) @native() @IntrinsicCandidate()
32. def compose[G[_]](implicit arg0: Apply[G]): Apply[[α]F[G[α]]]

Compose an `Apply[F]` and an `Apply[G]` into an `Apply[λ[α => F[G[α]]]]`.

Compose an `Apply[F]` and an `Apply[G]` into an `Apply[λ[α => F[G[α]]]]`.

Example:

```scala> import cats.implicits._

scala> val alo = Apply[List].compose[Option]

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)```
Definition Classes
Apply
33. def compose[G[_]](implicit arg0: Functor[G]): Functor[[α]F[G[α]]]
Definition Classes
Functor
34. def compose[G[_]](implicit arg0: Invariant[G]): Invariant[[α]F[G[α]]]

Compose Invariant `F[_]` and `G[_]` then produce `Invariant[F[G[_]]]` using their `imap`.

Compose Invariant `F[_]` and `G[_]` then produce `Invariant[F[G[_]]]` using their `imap`.

Example:

```scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
| Invariant[Semigroup].compose[List].imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)```
Definition Classes
Invariant
35. def composeApply[G[_]](implicit arg0: Apply[G]): InvariantSemigroupal[[α]F[G[α]]]
Definition Classes
InvariantSemigroupal
36. def composeContravariant[G[_]](implicit arg0: Contravariant[G]): Contravariant[[α]F[G[α]]]

Compose Invariant `F[_]` and Contravariant `G[_]` then produce `Invariant[F[G[_]]]` using F's `imap` and G's `contramap`.

Compose Invariant `F[_]` and Contravariant `G[_]` then produce `Invariant[F[G[_]]]` using F's `imap` and G's `contramap`.

Example:

```scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> type ToInt[T] = T => Int
scala> val durSemigroupToInt: Semigroup[ToInt[FiniteDuration]] =
| Invariant[Semigroup]
|   .composeContravariant[ToInt]
|   .imap(Semigroup[ToInt[Long]])(Duration.fromNanos)(_.toNanos)
// semantically equal to (2.seconds.toSeconds.toInt + 1) + (2.seconds.toSeconds.toInt * 2) = 7
scala> durSemigroupToInt.combine(_.toSeconds.toInt + 1, _.toSeconds.toInt * 2)(2.seconds)
res1: Int = 7```
Definition Classes
FunctorInvariant
37. def composeFunctor[G[_]](implicit arg0: Functor[G]): Invariant[[α]F[G[α]]]

Compose Invariant `F[_]` and Functor `G[_]` then produce `Invariant[F[G[_]]]` using F's `imap` and G's `map`.

Compose Invariant `F[_]` and Functor `G[_]` then produce `Invariant[F[G[_]]]` using F's `imap` and G's `map`.

Example:

```scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
| Invariant[Semigroup]
|   .composeFunctor[List]
|   .imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)```
Definition Classes
Invariant
38. final def eq(arg0: AnyRef)
Definition Classes
AnyRef
39. def equals(arg0: Any)
Definition Classes
AnyRef → Any
40. def flatTap[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[A]

Apply a monadic function and discard the result while keeping the effect.

Apply a monadic function and discard the result while keeping the effect.

```scala> import cats._, implicits._
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> List[Int](0).flatTap(nCats)
res2: List[Int] = List()
scala> List[Int](4).flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)```
Definition Classes
FlatMap
41. def flatten[A](ffa: F[F[A]]): F[A]

"flatten" a nested `F` of `F` structure into a single-layer `F` structure.

"flatten" a nested `F` of `F` structure into a single-layer `F` structure.

This is also commonly called `join`.

Example:

```scala> import cats.Eval
scala> import cats.implicits._

scala> val nested: Eval[Eval[Int]] = Eval.now(Eval.now(3))
scala> val flattened: Eval[Int] = nested.flatten
scala> flattened.value
res0: Int = 3```
Definition Classes
FlatMap
42. final def fmap[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in `.map` method.

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in `.map` method.

Example:

```scala> import cats.implicits._

scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")

scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)```
Definition Classes
Functor
43. def foreverM[A, B](fa: F[A]): F[B]

Like an infinite loop of >> calls.

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

This will be an infinite loop, or it will return an F[Nothing].

Be careful using this. For instance, a List of length k will produce a list of length k^n at iteration n. This means if k = 0, we return an empty list, if k = 1, we loop forever allocating single element lists, but if we have a k > 1, we will allocate exponentially increasing memory and very quickly OOM.

Definition Classes
FlatMap
Annotations
@noop()
44. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

Tuple the values in fa with the result of applying a function with the value

Tuple the values in fa with the result of applying a function with the value

Example:

```scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))```
Definition Classes
Functor
45. def fproductLeft[A, B](fa: F[A])(f: (A) ⇒ B): F[(B, A)]

Pair the result of function application with `A`.

Pair the result of function application with `A`.

Example:

```scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))```
Definition Classes
Functor
46. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
Annotations
@native() @IntrinsicCandidate()
47. def hashCode(): Int
Definition Classes
AnyRef → Any
Annotations
@native() @IntrinsicCandidate()
48. def ifF[A](fb: F[Boolean])(ifTrue: ⇒ A, ifFalse: ⇒ A): F[A]

Lifts `if` to Functor

Lifts `if` to Functor

Example:

```scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)```
Definition Classes
Functor
Annotations
@noop()
49. def ifM[B](fa: F[Boolean])(ifTrue: ⇒ F[B], ifFalse: ⇒ F[B]): F[B]

`if` lifted into monad.

`if` lifted into monad.

Definition Classes
FlatMap
Annotations
@noop()
50. def imap[A, B](fa: F[A])(f: (A) ⇒ B)(g: (B) ⇒ A): F[B]

Transform an `F[A]` into an `F[B]` by providing a transformation from `A` to `B` and one from `B` to `A`.

Transform an `F[A]` into an `F[B]` by providing a transformation from `A` to `B` and one from `B` to `A`.

Example:

```scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroup: Semigroup[FiniteDuration] =
| Invariant[Semigroup].imap(Semigroup[Long])(Duration.fromNanos)(_.toNanos)
scala> durSemigroup.combine(2.seconds, 3.seconds)
res1: FiniteDuration = 5 seconds```
Definition Classes
FunctorInvariant
51. final def isInstanceOf[T0]
Definition Classes
Any
52. def iterateForeverM[A, B](a: A)(f: (A) ⇒ F[A]): F[B]

iterateForeverM is almost exclusively useful for effect types.

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

Definition Classes
FlatMap
Annotations
@noop()
53. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

Lift a function f to operate on Functors

Lift a function f to operate on Functors

Example:

```scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val o = Option(42)
scala> Functor[Option].lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)```
Definition Classes
Functor
54. def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
55. def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
56. def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
57. def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
58. def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
59. def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
60. def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
61. def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
62. def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
63. def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
64. def map2[A, B, Z](fa: F[A], fb: F[B])(f: (A, B) ⇒ Z): F[Z]

Applies the pure (binary) function f to the effectful values fa and fb.

Applies the pure (binary) function f to the effectful values fa and fb.

map2 can be seen as a binary version of cats.Functor#map.

Example:

```scala> import cats.implicits._

scala> val someInt: Option[Int] = Some(3)
scala> val noneInt: Option[Int] = None
scala> val someLong: Option[Long] = Some(4L)
scala> val noneLong: Option[Long] = None

scala> Apply[Option].map2(someInt, someLong)((i, l) => i.toString + l.toString)
res0: Option[String] = Some(34)

scala> Apply[Option].map2(someInt, noneLong)((i, l) => i.toString + l.toString)
res0: Option[String] = None

scala> Apply[Option].map2(noneInt, noneLong)((i, l) => i.toString + l.toString)
res0: Option[String] = None

scala> Apply[Option].map2(noneInt, someLong)((i, l) => i.toString + l.toString)
res0: Option[String] = None```
Definition Classes
FlatMapApply
65. def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
66. def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
67. def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
68. def map2Eval[A, B, Z](fa: F[A], fb: Eval[F[B]])(f: (A, B) ⇒ Z): Eval[F[Z]]

Similar to map2 but uses Eval to allow for laziness in the `F[B]` argument.

Similar to map2 but uses Eval to allow for laziness in the `F[B]` argument. This can allow for "short-circuiting" of computations.

NOTE: the default implementation of `map2Eval` does not short-circuit computations. For data structures that can benefit from laziness, Apply instances should override this method.

In the following example, `x.map2(bomb)(_ + _)` would result in an error, but `map2Eval` "short-circuits" the computation. `x` is `None` and thus the result of `bomb` doesn't even need to be evaluated in order to determine that the result of `map2Eval` should be `None`.

```scala> import cats.{Eval, Later}
scala> import cats.implicits._
scala> val bomb: Eval[Option[Int]] = Later(sys.error("boom"))
scala> val x: Option[Int] = None
scala> x.map2Eval(bomb)(_ + _).value
res0: Option[Int] = None```
Definition Classes
FlatMapApply
69. def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
70. def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
71. def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
72. def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
73. def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
74. def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
75. def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) ⇒ Z): F[Z]

Definition Classes
ApplyArityFunctions
76. def mproduct[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[(A, B)]

Pair `A` with the result of function application.

Pair `A` with the result of function application.

Example:

```scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))```
Definition Classes
FlatMap
77. final def ne(arg0: AnyRef)
Definition Classes
AnyRef
78. final def notify(): Unit
Definition Classes
AnyRef
Annotations
@native() @IntrinsicCandidate()
79. final def notifyAll(): Unit
Definition Classes
AnyRef
Annotations
@native() @IntrinsicCandidate()
80. def product[A, B](fa: F[A], fb: F[B]): F[(A, B)]

Combine an `F[A]` and an `F[B]` into an `F[(A, B)]` that maintains the effects of both `fa` and `fb`.

Combine an `F[A]` and an `F[B]` into an `F[(A, B)]` that maintains the effects of both `fa` and `fb`.

Example:

```scala> import cats.implicits._

scala> val noneInt: Option[Int] = None
scala> val some3: Option[Int] = Some(3)
scala> val noneString: Option[String] = None
scala> val someFoo: Option[String] = Some("foo")

scala> Semigroupal[Option].product(noneInt, noneString)
res0: Option[(Int, String)] = None

scala> Semigroupal[Option].product(noneInt, someFoo)
res1: Option[(Int, String)] = None

scala> Semigroupal[Option].product(some3, noneString)
res2: Option[(Int, String)] = None

scala> Semigroupal[Option].product(some3, someFoo)
res3: Option[(Int, String)] = Some((3,foo))```
Definition Classes
FlatMapApplySemigroupal
81. def productL[A, B](fa: F[A])(fb: F[B]): F[A]

Compose two actions, discarding any value produced by the second.

Compose two actions, discarding any value produced by the second.

Definition Classes
FlatMapApply

```scala> import cats.implicits._
scala> import cats.data.Validated
scala> import Validated.{Valid, Invalid}

scala> type ErrOr[A] = Validated[String, A]

scala> val validInt: ErrOr[Int] = Valid(3)
scala> val validBool: ErrOr[Boolean] = Valid(true)
scala> val invalidInt: ErrOr[Int] = Invalid("Invalid int.")
scala> val invalidBool: ErrOr[Boolean] = Invalid("Invalid boolean.")

scala> Apply[ErrOr].productL(validInt)(validBool)
res0: ErrOr[Int] = Valid(3)

scala> Apply[ErrOr].productL(invalidInt)(validBool)
res1: ErrOr[Int] = Invalid(Invalid int.)

scala> Apply[ErrOr].productL(validInt)(invalidBool)
res2: ErrOr[Int] = Invalid(Invalid boolean.)

scala> Apply[ErrOr].productL(invalidInt)(invalidBool)
res3: ErrOr[Int] = Invalid(Invalid int.Invalid boolean.)```
82. def productLEval[A, B](fa: F[A])(fb: Eval[F[B]]): F[A]

Sequentially compose two actions, discarding any value produced by the second.

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only after the first action has finished:

```scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int].productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)```
Definition Classes
FlatMap
83. def productR[A, B](fa: F[A])(fb: F[B]): F[B]

Compose two actions, discarding any value produced by the first.

Compose two actions, discarding any value produced by the first.

Definition Classes
FlatMapApply

```scala> import cats.implicits._
scala> import cats.data.Validated
scala> import Validated.{Valid, Invalid}

scala> type ErrOr[A] = Validated[String, A]

scala> val validInt: ErrOr[Int] = Valid(3)
scala> val validBool: ErrOr[Boolean] = Valid(true)
scala> val invalidInt: ErrOr[Int] = Invalid("Invalid int.")
scala> val invalidBool: ErrOr[Boolean] = Invalid("Invalid boolean.")

scala> Apply[ErrOr].productR(validInt)(validBool)
res0: ErrOr[Boolean] = Valid(true)

scala> Apply[ErrOr].productR(invalidInt)(validBool)
res1: ErrOr[Boolean] = Invalid(Invalid int.)

scala> Apply[ErrOr].productR(validInt)(invalidBool)
res2: ErrOr[Boolean] = Invalid(Invalid boolean.)

scala> Apply[ErrOr].productR(invalidInt)(invalidBool)
res3: ErrOr[Boolean] = Invalid(Invalid int.Invalid boolean.)```
84. def productREval[A, B](fa: F[A])(fb: Eval[F[B]]): F[B]

Sequentially compose two actions, discarding any value produced by the first.

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only after the first action has finished:

```scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)```
Definition Classes
FlatMap
85. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
86. def toString(): String
Definition Classes
AnyRef → Any
87. def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]

Definition Classes
ApplyArityFunctions
88. def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]

Definition Classes
ApplyArityFunctions
89. def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]

Definition Classes
ApplyArityFunctions
90. def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]

Definition Classes
ApplyArityFunctions
91. def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]

Definition Classes
ApplyArityFunctions
92. def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]

Definition Classes
ApplyArityFunctions
93. def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]

Definition Classes
ApplyArityFunctions
94. def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]

Definition Classes
ApplyArityFunctions
95. def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]

Definition Classes
ApplyArityFunctions
96. def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]

Definition Classes
ApplyArityFunctions
97. def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
Definition Classes
ApplyArityFunctions
98. def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]

Definition Classes
ApplyArityFunctions
99. def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]

Definition Classes
ApplyArityFunctions
100. def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]

Definition Classes
ApplyArityFunctions
101. def tuple3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]

Definition Classes
ApplyArityFunctions
102. def tuple4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]

Definition Classes
ApplyArityFunctions
103. def tuple5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]

Definition Classes
ApplyArityFunctions
104. def tuple6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]

Definition Classes
ApplyArityFunctions
105. def tuple7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]

Definition Classes
ApplyArityFunctions
106. def tuple8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]

Definition Classes
ApplyArityFunctions
107. def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]

Definition Classes
ApplyArityFunctions
108. def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]

Tuples the `A` value in `F[A]` with the supplied `B` value, with the `B` value on the left.

Tuples the `A` value in `F[A]` with the supplied `B` value, with the `B` value on the left.

Example:

```scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))```
Definition Classes
Functor
109. def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]

Tuples the `A` value in `F[A]` with the supplied `B` value, with the `B` value on the right.

Tuples the `A` value in `F[A]` with the supplied `B` value, with the `B` value on the right.

Example:

```scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))```
Definition Classes
Functor
110. def untilDefinedM[A](foa: F[Option[A]]): F[A]

This repeats an F until we get defined values.

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

Definition Classes
FlatMap
Annotations
@noop()
111. def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])

Un-zips an `F[(A, B)]` consisting of element pairs or Tuple2 into two separate F's tupled.

Un-zips an `F[(A, B)]` consisting of element pairs or Tuple2 into two separate F's tupled.

NOTE: Check for effect duplication, possibly memoize before

```scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].unzip(List((1,2), (3, 4)))
res0: (List[Int], List[Int]) = (List(1, 3),List(2, 4))```
Definition Classes
Functor
Annotations
@noop()
112. def void[A](fa: F[A]): F[Unit]

Empty the fa of the values, preserving the structure

Empty the fa of the values, preserving the structure

Example:

```scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].void(List(1,2,3))
res0: List[Unit] = List((), (), ())```
Definition Classes
Functor
113. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
114. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@throws( ... ) @native()
115. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
116. def widen[A, B >: A](fa: F[A]): F[B]

Lifts natural subtyping covariance of covariant Functors.

Lifts natural subtyping covariance of covariant Functors.

NOTE: In certain (perhaps contrived) situations that rely on universal equality this can result in a `ClassCastException`, because it is implemented as a type cast. It could be implemented as `map(identity)`, but according to the functor laws, that should be equal to `fa`, and a type cast is often much more performant. See this example of `widen` creating a `ClassCastException`.

Example:

```scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val s = Some(42)
scala> Functor[Option].widen(s)
res0: Option[Int] = Some(42)```
Definition Classes
Functor

### Deprecated Value Members

1. def finalize(): Unit
Attributes
protected[lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] ) @Deprecated
Deprecated
2. def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]
Definition Classes
Apply
Annotations
@noop() @deprecated
Deprecated

(Since version 2.6.2) Dangerous method, use ifM (a flatMap) or ifF (a map) instead

### ap arity

Higher-arity ap methods

### map arity

Higher-arity map methods

### tuple arity

Higher-arity tuple methods